tvopt
Release 0.2.7

Nicola Bastianello

Jan 09, 2023

1 tvopt package

CONTENTS:

1.1 Submodules e e e e e e e e
1.2 tvopt.costsmodule e e e e e e
1.3 tvoptdistributed_solvers module
1.4 tvoptnetworks module L. e e e e e e e
1.5 tvoptpredictionmodule L e e e e

1.6 tvopt.sets module

1.7 tvopt.solversmodule L. L e e e e e

1.8 tvopt.utils module
1.9 Module contents

2 Indices and tables
Python Module Index

Index

61

63

65

CHAPTER
ONE

TVOPT PACKAGE

1.1 Submodules

1.2 tvopt.costs module

Cost template definition and examples.

class tvopt.costs.AbsoluteValue (weight=1)
Bases: Cost

Scalar absolute value function.

function(x)

An evaluation of the cost. Implement if needed.
Parameters
e X (array_1like) — The x where the cost should be evaluated.
» *args — The time at which the cost should be evaluated. Not required if the cost is static.
o **kwargs — Any other required argument.

gradient (x)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
e x (array_like) — The x where the (sub-)gradient should be evaluated.

¢ *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

e **kwargs — Any other required argument.

proximal (x, penalty=1)
An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters
e x (array_like) — The x where the proximal should be evaluated.

* *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

tvopt, Release 0.2.7

e penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

» **kwargs — Any other required argument.

class tvopt.costs.Constant (dom, c)

Bases: Cost
Constant cost.

This class defines a constant, whose value is stored in the attribute c¢. The gradient and hessian methods return
0, while the proximal acts as an identity.

dom

The given cost domain, for compatibility with other costs.

Type
sets.Set
c
The constant value.
Type
float
smooth

The smoothness degree, set to 2.

Type
int

function(*args, **kwargs)
An evaluation of the cost.
Returns the costant value.
gradient (*args, **kwargs)
An evaluation of the cost’s gradient.
Returns 0.

hessian(*args, **kwargs)

An evaluation of the cost’s Hessian.
Returns 0.

proximal (x, *args, **kwargs)

An evaluation of the cost’s proximal.
Acts as the identity, returning x.

class tvopt.costs.Cost(dom, time=None, prox_solver=None)
Bases: object

Template for a cost function.

This class defines the template for a cost function
foRM X2 Ry — RU {400}

which depends on the unknown x € R™*"2%- and, optionally, on the time t € R.

Cost objects support the following operations:

2 Chapter 1. tvopt package

tvopt, Release 0.2.7

* negation

* sum (by another cost or with a scalar),

» product (by another cost or with a scalar),
* division and power with a scalar.

A Cost object should expose, compatibly with the smoothness degree, the methods function, gradient, hessian,
proximal. The convention for these methods is that the first positional argument is &, and only a second positional
argument is allowed, for t. Any other argument should be passed as a keyword argument.

If the cost is time-varying, then it should expose the methods time_derivative and sample, as well; see methods’
documentation for the default behavior.

dom
The x domain R? %72
Type
sets.Set
time

The time domain R . If the cost is static this is None.

Type
sets. T

is_dynamic
Attribute to check if the cost is static or dynamic.

Type
bool

smooth

This attribute stores the smoothness degree of the cost, for example it is O if the cost is continuous, 1 if the
cost is differentiable, efc. By convention it is —1 if the cost is discontinuous.

Type

int
_prox_solver
This attribute specifies the method (gradient or Newton) that should be used to compute the proximal

. 1
prox, 5, () = arganin, {f(y;t) ol x}

of the cost, if a closed form is not available. See also the auxiliary function compute_proximal.

Type

str or None

Notes

Not all operations preserve convexity.

function(x, *args, **kwargs)
An evaluation of the cost. Implement if needed.

Parameters

e X (array_1like) — The x where the cost should be evaluated.

1.2. tvopt.costs module 3

tvopt, Release 0.2.7

* *args — The time at which the cost should be evaluated. Not required if the cost is static.
¢ **kwargs — Any other required argument.

gradient (x, *args, **kwargs)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
* x (array_1like) — The x where the (sub-)gradient should be evaluated.

* *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

o **kwargs — Any other required argument.

hessian(x, *args, **kwargs)

An evaluation of the cost’s Hessian. Implement if needed.
Parameters
e X (array_1like) — The x where the Hessian should be evaluated.

* *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

e **kwargs — Any other required argument.

proximal (x, *args, penalty=1, **kwargs)
An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters
* X (array_1like) — The x where the proximal should be evaluated.

» *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

e penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

¢ **kwargs — Any other required argument.

sample(?)
Sample the cost.

This method returns a SampledCost object which exposes the same methods of the cost but fixing the time
argument to ¢.

If the cost is static, the cost itself is returned.

Parameters
t (float) — The time at which the cost should be sampled.

Returns
The sampled cost or, if static, the cost itself.

Return type
Cost

4 Chapter 1. tvopt package

tvopt, Release 0.2.7

time_derivative(x, t, der="tx', **kwargs)

A derivative w.r.t. time of the cost.

This method computes derivatives w.r.t. time of the cost, or mixed derivatives w.r.t. both time and x (e.g.
the derivative in time of the gradient).

If this method is not overwritten, it computes the derivative by default using backward finite differences.
See backward_finite_difference for details.

If the cost is static, 0 is returned.
Parameters
e X (array_1like) — The x where the derivative should be evaluated.
¢ t (float) — The time at which the derivative should be evaluated.

e der (str, optional)— A sequence of “x” and “t” that chooses which derivative should
be computed. For example, the default “tx” denotes the derivative w.r.t. time of the cost’s
(sub-)gradient.

o **kwargs — Any other required argument.

Raises
ValueError — If the number of “x” characters in der exceeds 2.

Returns
The required derivative or 0.

Return type
array_like

class tvopt.costs.DiscreteDynamicCost(costs, t s=1)
Bases: Cost

Dynamic cost from a sequence of static costs.
This class creates a dynamic cost from a list of static costs. That is, given a sampling time T, the cost at time

tr, = kT is:

fz;ts) = fi(@)

with fj the k-th static cost in the list.

function(x, ¢, **kwargs)

An evaluation of the cost. Implement if needed.
Parameters
e X (array_1like) — The x where the cost should be evaluated.
¢ *args — The time at which the cost should be evaluated. Not required if the cost is static.
e **kwargs — Any other required argument.

gradient (x, t, **kwargs)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
* x (array_like) — The x where the (sub-)gradient should be evaluated.

* *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

1.2. tvopt.costs module 5

tvopt, Release 0.2.7

e **kwargs — Any other required argument.

hessian(x, ¢, **kwargs)

An evaluation of the cost’s Hessian. Implement if needed.
Parameters
e X (array_1like) — The x where the Hessian should be evaluated.

* *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

¢ **kwargs — Any other required argument.

proximal (x, f, **kwargs)

An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters
* x (array_like) — The x where the proximal should be evaluated.

e *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

e penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

o **kwargs — Any other required argument.

sample ()

Sample the cost.
The difference with the default Cost method is that it returns a cost in the list rather than a SampledCost.

Parameters
t (float) — The time at which the cost should be sampled.

Returns
The closest cost in the list.

Return type
Cost

class tvopt.costs.DynamicExample_1D(z_s, t_max, omega=0.06283185307179587, kappa=7.5, mu=1.75)
Bases: Cost

Scalar benchmark dynamic cost.

The dynamic cost was propposed in” and is defined as:

Flart) = 5 — cos(w))? + log(1 + exp(ur)

with default parameters w = 0.027, k = 7.5 and p = 1.75.

approximate_time_derivative(x, ¢, der="tx")

2 A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A Class of Prediction-Correction Methods for Time-Varying Convex Opti-
mization,” IEEE Transactions on Signal Processing, vol. 64, no. 17, pp. 4576-4591, Sep. 2016.

6 Chapter 1. tvopt package

tvopt, Release 0.2.7

function(x, 1)

An evaluation of the cost. Implement if needed.
Parameters
e X (array_1like) — The x where the cost should be evaluated.
¢ *args — The time at which the cost should be evaluated. Not required if the cost is static.
e **kwargs — Any other required argument.

gradient (x, 1)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
e x (array_like) — The x where the (sub-)gradient should be evaluated.

* *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

¢ **kwargs — Any other required argument.

hessian(x, t=None)
An evaluation of the cost’s Hessian. Implement if needed.

Parameters
e X (array_1like) — The x where the Hessian should be evaluated.

* *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

o **kwargs — Any other required argument.

time_derivative(x, ¢, der="tx")

A derivative w.r.t. time of the cost.

This method computes derivatives w.r.t. time of the cost, or mixed derivatives w.r.t. both time and x (e.g.
the derivative in time of the gradient).

If this method is not overwritten, it computes the derivative by default using backward finite differences.
See backward_finite_difference for details.

If the cost is static, 0 is returned.
Parameters
e X (array_1like) — The x where the derivative should be evaluated.
e t (float) — The time at which the derivative should be evaluated.

113

e der (str, optional) - A sequence of “x” and “t” that chooses which derivative should
be computed. For example, the default “tx” denotes the derivative w.r.t. time of the cost’s
(sub-)gradient.

e **kwargs — Any other required argument.

Raises
ValueError — If the number of “x” characters in der exceeds 2.

Returns
The required derivative or 0.

Return type
array_like

1.2. tvopt.costs module 7

tvopt, Release 0.2.7

class tvopt.costs.DynamicExample_2D(r s, 7_max)
Bases: Cost

Bi-dimensional benchmark dynamic cost.

The dynamic cost was proposed in® and is defined as:

flz;t) = %(ml — exp(cos(t)))? + %(1‘2 — z; tanh(t))?

where we used the notation = [x1, 2] "

approximate_time_derivative(x, ¢, der="tx")

function(x, 1)

An evaluation of the cost. Implement if needed.
Parameters

e X (array_1like) — The x where the cost should be evaluated.
e *args — The time at which the cost should be evaluated. Not required if the cost is static.
e **kwargs — Any other required argument.

gradient (x, t)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
* x (array_like) — The x where the (sub-)gradient should be evaluated.

* *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

o **kwargs — Any other required argument.

hessian(x=None, t=None)

An evaluation of the cost’s Hessian. Implement if needed.
Parameters
e X (array_1like) — The x where the Hessian should be evaluated.

* *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

e **kwargs — Any other required argument.

time_derivative(x, ¢, der="tx")

A derivative w.r.t. time of the cost.

This method computes derivatives w.r.t. time of the cost, or mixed derivatives w.r.t. both time and x (e.g.
the derivative in time of the gradient).

If this method is not overwritten, it computes the derivative by default using backward finite differences.
See backward_finite_difference for details.

If the cost is static, 0O is returned.

3'Y. Zhang, Z. Qi, B. Qiu, M. Yang, and M. Xiao, “Zeroing Neural Dynamics and Models for Various Time-Varying Problems Solving with
ZLSF Models as Minimization-Type and Euler-Type Special Cases [Research Frontier],” IEEE Computational Intelligence Magazine, vol. 14, no.
3, pp. 52-60, Aug. 2019.

8 Chapter 1. tvopt package

tvopt, Release 0.2.7

Parameters
e X (array_1like) — The x where the derivative should be evaluated.
e t (float) — The time at which the derivative should be evaluated.

e der (str, optional) - A sequence of “x” and “t” that chooses which derivative should
be computed. For example, the default “tx” denotes the derivative w.r.t. time of the cost’s
(sub-)gradient.

e **kwargs — Any other required argument.

Raises
ValueError — If the number of “x” characters in der exceeds 2.

Returns
The required derivative or 0.

Return type
array_like

class tvopt.costs.Huber (n, threshold)
Bases: Cost

Vector Huber loss.

The cost is defined as

_ Jl=l?/2 if [|lz]| < 6
J(@) = {9(:1:” —6/2) otherwise

where 6 > 0 is a given threshold.

function(x)

An evaluation of the cost. Implement if needed.
Parameters
e X (array_1like) — The x where the cost should be evaluated.
* *args — The time at which the cost should be evaluated. Not required if the cost is static.
¢ **kwargs — Any other required argument.

gradient (x)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
* x (array_1like) — The x where the (sub-)gradient should be evaluated.

* *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

o **kwargs — Any other required argument.

hessian(x)

An evaluation of the cost’s Hessian. Implement if needed.
Parameters

e X (array_1like) — The x where the Hessian should be evaluated.

1.2. tvopt.costs module 9

tvopt, Release 0.2.7

* *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

» **kwargs — Any other required argument.

proximal (x, penalty=1)

An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters
* x (array_like) — The x where the proximal should be evaluated.

* *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

e penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

o **kwargs — Any other required argument.

class tvopt.costs.Huber_1D (threshold)
Bases: Cost

Huber loss.

The cost is defined as

) a?)2 if|z] <6
J(@) = {9(1| —6/2) otherwise

where 6 > 0 is a given threshold.

function(x)

An evaluation of the cost. Implement if needed.
Parameters
e x (array_1like) — The x where the cost should be evaluated.
e *args — The time at which the cost should be evaluated. Not required if the cost is static.
e **kwargs — Any other required argument.

gradient (x)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
* X (array_like) — The x where the (sub-)gradient should be evaluated.

» *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

» **kwargs — Any other required argument.

hessian(x)

An evaluation of the cost’s Hessian. Implement if needed.

Parameters

10 Chapter 1. tvopt package

tvopt, Release 0.2.7

e X (array_1like) — The x where the Hessian should be evaluated.

» *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

o **kwargs — Any other required argument.

proximal (x, penalty=1)

An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters
* x (array_like) — The x where the proximal should be evaluated.

» *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

e penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

e **kwargs — Any other required argument.

class tvopt.costs.Indicator(s)
Bases: Cost

Indicator function of a given set.

This objects implements the indicator function of a given Set object. That is, given the set S we define:

fe) = {0 ifzcS

+o00 otherwise.

The proximal operator of the cost is the projection onto the set.

function(x)

An evaluation of the cost. Implement if needed.
Parameters
e X (array_1like) — The x where the cost should be evaluated.
* *args — The time at which the cost should be evaluated. Not required if the cost is static.
¢ **kwargs — Any other required argument.
projection(x, **kwargs)
proximal (x, *args, penalty=1, **kwargs)
An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters
* X (array_1like) — The x where the proximal should be evaluated.

» *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

1.2. tvopt.costs module 11

tvopt, Release 0.2.7

e penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

» **kwargs — Any other required argument.

class tvopt.costs.Linear(b, c=0)

Bases: Cost
Linear cost.

The function is defined as

f(z) = (z,b) +c

class tvopt.costs.LinearRegression(A, b)
Bases: Cost

Cost for linear regression.

The cost is defined as

1
f(@) = 5llAz —b|*.

class tvopt.costs.Logistic
Bases: Cost
Logistic function.

The function is defined as

f(z) =log (1 + exp(x)).

function(x)
An evaluation of the cost. Implement if needed.
Parameters
e X (array_1like) — The x where the cost should be evaluated.
e *args — The time at which the cost should be evaluated. Not required if the cost is static.
e **kwargs — Any other required argument.
gradient (x)
An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
* X (array_like) — The x where the (sub-)gradient should be evaluated.

» *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

» **kwargs — Any other required argument.

12 Chapter 1. tvopt package

tvopt, Release 0.2.7

hessian(x)

An evaluation of the cost’s Hessian. Implement if needed.
Parameters
e x (array_1like) — The x where the Hessian should be evaluated.

e *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

e **kwargs — Any other required argument.

proximal (x, penalty=1, max_iter=50, tol=1e-08)
An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters
* X (array_1like) — The x where the proximal should be evaluated.

* *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

e penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

¢ **kwargs — Any other required argument.

class tvopt.costs.LogisticRegression(A, b, weight=0)
Bases: Cost

Cost for logistic regression.

The cost is defined as

F@) =S log (1 + exp (—bslas,@) + z0))

i=1
where b; € {—1,1}, a; are classifier and feature vector, and x is the intercept. An optional ¢5 regularization
can be added defining its weight penalty.

function(x)
An evaluation of the cost. Implement if needed.

Parameters
e X (array_1like) — The x where the cost should be evaluated.
* *args — The time at which the cost should be evaluated. Not required if the cost is static.
o **kwargs — Any other required argument.

gradient (x)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
* x (array_1like) — The x where the (sub-)gradient should be evaluated.

* *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

1.2. tvopt.costs module 13

tvopt, Release 0.2.7

e **kwargs — Any other required argument.

hessian(x)

An evaluation of the cost’s Hessian. Implement if needed.
Parameters
e X (array_1like) — The x where the Hessian should be evaluated.

* *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

¢ **kwargs — Any other required argument.

proximal (x, penalty=1, tol=1e-05, max_iter=100)
An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters
* x (array_like) — The x where the proximal should be evaluated.

e *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

e penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

o **kwargs — Any other required argument.

class tvopt.costs.Norm_1(n=I, weight=1)
Bases: Cost

Class for ¢ norm.

The function is defined as

fx) = wlzll

forx € R™ and w > 0.

function(x)

An evaluation of the cost. Implement if needed.
Parameters
e X (array_1like) — The x where the cost should be evaluated.
* *args — The time at which the cost should be evaluated. Not required if the cost is static.
e **kwargs — Any other required argument.

gradient (x)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
e x (array_like) — The x where the (sub-)gradient should be evaluated.

¢ *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

14 Chapter 1. tvopt package

tvopt, Release 0.2.7

e **kwargs — Any other required argument.

proximal (x, penalty=1)
Proximal evaluation of /1 norm, a.k.a. soft-thresholding.

See also:
utils.soft_thresholding

class tvopt.costs.Norm_2(n=I, weight=1I)
Bases: Cost

Square 2-norm.

class tvopt.costs.Norm_inf (n=I, weight=1)
Bases: Cost

Class for £, norm.

function(x)
An evaluation of the cost. Implement if needed.

Parameters
e X (array_1like) — The x where the cost should be evaluated.
* *args — The time at which the cost should be evaluated. Not required if the cost is static.
¢ **kwargs — Any other required argument.

proximal (x, penalty=1, tol=1e-05)

Proximal evaluation of /., norm.

See* for the formula.

References

class tvopt.costs.PowerCost(cost, p)
Bases: Cost

Power cost.
This class defines a cost as the given power of a cost. It is used for implementing the * operation.

function(*args, **kwargs)

An evaluation of the power cost.

gradient (*args, **kwargs)

An evaluation of the power cost (sub-)gradient.

hessian(*args, **kwargs)

An evaluation of the power cost Hessian.

class tvopt.costs.ProductCost(c_/,c_2)
Bases: Cost

Product of two costs.

This class defines a cost from the product of two given costs. Derivatives are computed using the chain rule.

4 A. Beck, First-Order Methods in Optimization. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2017.

1.2. tvopt.costs module 15

tvopt, Release 0.2.7

function(x, *args, **kwargs)

An evaluation of the product cost.

gradient (x, *args, **kwargs)
An evaluation of the product cost (sub-)gradient.

hessian(x, *args, **kwargs)
An evaluation of the product cost Hessian.

class tvopt.costs.Quadratic(A, b, c=0)
Bases: Cost

Quadratic cost.

The function is defined as

f(z) = %zTA:I: + (x,b) + ¢

with the given matrix A € R™*™ and vector b € R™.

function(x)

An evaluation of the cost. Implement if needed.
Parameters
e X (array_1like) — The x where the cost should be evaluated.
¢ *args — The time at which the cost should be evaluated. Not required if the cost is static.
o **kwargs — Any other required argument.

gradient (x)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
* x (array_1like) — The x where the (sub-)gradient should be evaluated.

* *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

o **kwargs — Any other required argument.

hessian(x=None)

An evaluation of the cost’s Hessian. Implement if needed.
Parameters
e X (array_1like) — The x where the Hessian should be evaluated.

* *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

e **kwargs — Any other required argument.

proximal (x, penalty=1)

An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters

16 Chapter 1. tvopt package

tvopt, Release 0.2.7

* X (array_1like) — The x where the proximal should be evaluated.

» *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

* penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

¢ **kwargs — Any other required argument.

class tvopt.costs.Quadratic_1D(a, b, c=0)
Bases: Cost

Scalar quadratic cost.

The cost is defined as

f(x) = az®/2 + bz + c.

function(x)

An evaluation of the cost. Implement if needed.
Parameters
e X (array_1like) — The x where the cost should be evaluated.
¢ *args — The time at which the cost should be evaluated. Not required if the cost is static.
e **kwargs — Any other required argument.

gradient (x)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
e x (array_like) — The x where the (sub-)gradient should be evaluated.

e *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

e **kwargs — Any other required argument.

hessian (x=None)

An evaluation of the cost’s Hessian. Implement if needed.
Parameters
e X (array_1like) — The x where the Hessian should be evaluated.

* *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

o **kwargs — Any other required argument.

proximal (x, penalty=1I)

An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters

* X (array_like) — The x where the proximal should be evaluated.

1.2. tvopt.costs module 17

tvopt, Release 0.2.7

» *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

* penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

o **kwargs — Any other required argument.

class tvopt.costs.RobustLinearRegression(A, b, threshold)
Bases: Cost

Cost for robust linear regression.

Let h : R — R be the Huber loss, then the cost is defined as:

m
flx) = Z h(a;z — b;)
i=1
where a; € R'*™ are the rows of the data matrix A € R™*" and b, the elements of the data vector b.

function(x)

An evaluation of the cost. Implement if needed.
Parameters
e X (array_like) — The x where the cost should be evaluated.
e *args — The time at which the cost should be evaluated. Not required if the cost is static.
¢ **kwargs — Any other required argument.

gradient (x)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
* x (array_like) — The x where the (sub-)gradient should be evaluated.

* *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

o **kwargs — Any other required argument.

hessian(x)

An evaluation of the cost’s Hessian. Implement if needed.
Parameters
e X (array_1like) — The x where the Hessian should be evaluated.

e *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

e **kwargs — Any other required argument.

class tvopt.costs.SampledCost(cost, 1)
Bases: Cost

Sampled cost.

This class defines a static cost by sampling a dynamic cost at a given time.

18 Chapter 1. tvopt package

tvopt, Release 0.2.7

function(x, **kwargs)

An evaluation of the cost. Implement if needed.
Parameters
e x (array_1like) — The x where the cost should be evaluated.
¢ *args — The time at which the cost should be evaluated. Not required if the cost is static.
e **kwargs — Any other required argument.

gradient (x, **kwargs)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
e x (array_like) — The x where the (sub-)gradient should be evaluated.

e *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

¢ **kwargs — Any other required argument.

hessian(x, **kwargs)
An evaluation of the cost’s Hessian. Implement if needed.

Parameters
e X (array_1like) — The x where the Hessian should be evaluated.

* *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

o **kwargs — Any other required argument.

proximal (x, **kwargs)

An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters
* X (array_like) — The x where the proximal should be evaluated.

* *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

e penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

o **kwargs — Any other required argument.

class tvopt.costs.ScaledCost(cost, s)
Bases: Cost

Scaled cost.

This class defines a cost scaled by a constant. That is, given the cost f : R” x Ry — RU {+oc0} and ¢ € R it
defines:

g(x;t) = cf(z;t).

1.2. tvopt.costs module 19

tvopt, Release 0.2.7

The class is used for the product and division by a constant.

function(*args, **kwargs)

An evaluation of the cost. Implement if needed.
Parameters
e X (array_1like) — The x where the cost should be evaluated.
e *args — The time at which the cost should be evaluated. Not required if the cost is static.
¢ **kwargs — Any other required argument.
gradient (*args, **kwargs)
An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
* X (array_like) — The x where the (sub-)gradient should be evaluated.

» *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

» **kwargs — Any other required argument.
hessian(*args, **kwargs)
An evaluation of the cost’s Hessian. Implement if needed.
Parameters
e X (array_1like) — The x where the Hessian should be evaluated.

» *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

o **kwargs — Any other required argument.
proximal (*args, **kwargs)
An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters
* x (array_like) — The x where the proximal should be evaluated.

* *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

e penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

e **kwargs — Any other required argument.

class tvopt.costs.SeparableCost(costs)
Bases: Cost

Separable cost function.

This class defines a separable cost, that is

20 Chapter 1. tvopt package

tvopt, Release 0.2.7

where x; € R™*"2%- for each i = 1,..., N. Each of the component functions f; can be either static or
dynamic. This is useful for defining distributed optimization problems.

The overall dimension of the domain is 7 X1y X. . . X IV, meaning that the last dimension indexes the components.

The class exposes the same methods as any Cost, with the difference that the keyword argument i can be used to
evaluate only a single component. If all components are evaluated, an ndarray is returned with the last dimension
indexing the components.

The class has the Cost attributes, with the following additions or differences.

costs

The component costs.

Type
list

The number of components.

Type

int
is_dynamic

True if at least one component is dynamic.

Type
bool

smooth

This is the minimum of the smoothness degrees of all components.

Type

int
function(x, *args, i=None, **kwargs)
An evaluation of the cost. Implement if needed.
Parameters
e X (array_1like) — The x where the cost should be evaluated.
* *args — The time at which the cost should be evaluated. Not required if the cost is static.
» **kwargs — Any other required argument.

gradient (x, *args, i=None, **kwargs)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
* x (array_1like) — The x where the (sub-)gradient should be evaluated.

* *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

o **kwargs — Any other required argument.

hessian(x, *args, i=None, **kwargs)

An evaluation of the cost’s Hessian. Implement if needed.
Parameters

e X (array_like) — The x where the Hessian should be evaluated.

1.2

tvopt.costs module 21

tvopt, Release 0.2.7

* *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

» **kwargs — Any other required argument.

proximal (x, *args, penalty=1, i=None, **kwargs)

An evaluation of the cost(s) proximal(s).

This is the same as calling _evaluate with “proximal”, with the difference that is customized to handle the
penalty parameter. In particular, the penalty can either be a scalar, in which case the same penalty is used
for all components, or a list of component-wise penalties.

class tvopt.costs.SumCost (*costs)
Bases: Cost

Sum of costs.

This class defines a cost as the sum of an arbitrary number of costs. That is, given the costs f; : R® x Ry —
R U {+o0} withi = 1,..., N, the class defines:

The function, gradient and hessian are defined from the components’ methods using the sum rule, while the
proximal by default is computed recursively.

function(x, *args, **kwargs)
An evaluation of the cost. Implement if needed.

Parameters
e X (array_1like) — The x where the cost should be evaluated.
» *args — The time at which the cost should be evaluated. Not required if the cost is static.
¢ **kwargs — Any other required argument.

gradient (x, *args, **kwargs)
An evaluation of the cost’s gradient or sub-gradient. Implement if needed.

Parameters
* x (array_like) — The x where the (sub-)gradient should be evaluated.

* *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

e **kwargs — Any other required argument.

hessian(x, *args, **kwargs)

An evaluation of the cost’s Hessian. Implement if needed.
Parameters
e X (array_1like) — The x where the Hessian should be evaluated.

e *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

o **kwargs — Any other required argument.

22 Chapter 1. tvopt package

tvopt, Release 0.2.7

tvopt.costs.backward_finite_difference (signal, t, order=1, step=1I)
Compute the backward finite difference of a signal.

This function computes an approximate derivative of a given signal using backward finite differences. Given the

signal s(t), it computes:

o if© . o
= 3§ ot - imorm
where o € N is the derivative order and 7}, is the sampling time, see” for more details.
Notice that if samples before ¢ = 0 are required, they are set to zero.
Parameters
» signal — A function of a single scalar argument that represents the signal.
e t (float) — The time where the derivative should be evaluated.
e order (int, optional) — The derivative order, defaults to 1.
* step (float, optional)— The sampling time, defaults to 1.

Raises
ValueError - For invalid order or step arguments.

Returns
The approximate derivative.

Return type
ndarray

References

tvopt.costs.compute_proximal (f, x, penalty, solver=None, **kwargs)

Compute the proximal of a cost.

This function (approximately) computes the proximal of a given cost if there is no closed form solution. The

function uses either a Newton method or a gradient method, both with backtracking line search.
Parameters
» f (Cost) — The static cost whose proximal is required.
* X (array_like) — Where the proximal has to be evaluated.
» penalty (float) — The penalty of the proximal.

* solver (str, optional)-The method to use for computing the proximal, Newton or gra-
dient. If not specified, Newton is used for twice differentiable function, gradient otherwise.

» **kwargs (dict) — Parameters for the Newton or gradient method.

Returns
y — The proximal.

Return type
ndarray

SA. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics, 2nd ed. Berlin; New York: Springer, 2007.

1.2. tvopt.costs module

23

tvopt, Release 0.2.7

See also:

solvers.backtracking_gradient, solvers.newton

1.3 tvopt.distributed_solvers module

Distributed solvers.

tvopt.distributed_solvers.admm(problem, penalty, rel, w_0=0, num_iter=100)
Distributed relaxed alternating direction method of multipliers (ADMM).

This function implements the distributed ADMM, see® and references therein. The algorithm is characterized
by the following updates

T} = Prox,(pay ([AT 25/ (pdi)

+1 _ ¢ ¢ ¢
Zi = (1- a)zij — azj; + 20pr;

for =0,1,..., where d; is node i’s degree, p and « are the penalty and relaxation parameters, and A is the arc
incidence matrix. The algorithm is guaranteed to converge to the optimal solution.

Parameters

* problem (dict) — A dictionary containing the network describing the multi-agent system
and the cost describing the problem.

* penalty (float) — The penalty parameter p of the algorithm (convergence is guaranteed
for any positive value).

» rel (float) — The relaxation parameter « of the algorithm (convergence is guaranteed for
values in (0, 1)).

e w_0 (ndarray, optional) - The initial value of the dual nodes’ states. This can be either
an ndarray of suitable size with the last dimension indexing the nodes, or a scalar. If it is a
scalar then the same initial value is used for all components.

e num_iter (int, optional)— The number of iterations to be performed.
Returns
* x (ndarray) — The nodes’ states after num_iter iterations.

* w (ndarray) — The dual variables of the nodes after num_iter iterations.

References

tvopt.distributed_solvers.aug_dgm(problem, step, x_0=0, num_iter=100)
Augmented distributed gradient method (Aug-DGM).

This function implements the Aug-DGM algorithm (see’). The algorithm is characterized by the following
updates

Y =Wy +Vf@)-ViE') (1.1)
2w (xe o A’.‘/-@)

6 N. Bastianello, R. Carli, L. Schenato, and M. Todescato, “Asynchronous Distributed Optimization over Lossy Networks via Relaxed ADMM:
Stability and Linear Convergence,” IEEE Transactions on Automatic Control.

77J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient methods for multi-agent optimization under uncoordinated constant
stepsizes,” in 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, Dec. 2015, pp. 2055-2060.

24 Chapter 1. tvopt package

tvopt, Release 0.2.7

for / = 0,1,... where A is a diagonal matrix of uncoordinated step-sizes. The algorithm is guaranteed to
converge to the optimal solution.

Parameters

* problem (dict) — A dictionary containing the network describing the multi-agent system
and the cost describing the problem.

* step (float) — A common step-size or a list of local step-sizes, one for each node.

* x_0 (ndarray, optional) - The initial states of the nodes. This can be either an ndarray
of suitable size with the last dimension indexing the nodes, or a scalar. If it is a scalar then
the same initial value is used for all components of the states.

e num_iter (int, optional) - The number of iterations to be performed.

Returns
x — The nodes’ states after num_iter iterations.

Return type
ndarray

References

tvopt.distributed_solvers.average_consensus (net, x_0, num_iter=100)
Average consensus.

Compute the average consensus over the network ner with initial states x_0.
Parameters
* net (networks.Network) — The network describing the multi-agent system.
* x_0 (ndarray) — The initial states in a ndarray, with the last dimension indexing the nodes.
* num_iter (int, optional) - The number of iterations to be performed.

Returns
x — The nodes’ states after num_iter iterations.

Return type
ndarray

tvopt.distributed_solvers.dpgm(problem, step, x_0=0, num_iter=100)
Distributed proximal gradient method (DPGM).

This function implements the DPGM algorithm proposed in® (see also’ for the gradient-only version). The
algorithm is characterized by the following updates

y' =Wz’ — aVf(zh) (1.3)
! = prox,, 9((]yﬁ)
for ¢ = 0,1,.... The algorithm is guaranteed to converge to a neighborhood of the optimal solution.

Parameters

* problem (dict) — A dictionary containing the network describing the multi-agent system
and the costs describing the (possibly composite) problem. The dictionary should contain f
and the network, and optionally g.

8 Bastianello, N., Ajalloeian, A., & Dall’Anese, E. (2020). Distributed and Inexact Proximal Gradient Method for Online Convex Optimization.
arXiv preprint arXiv:2001.00870.

9 Yuan, K., Ling, Q., & Yin, W. (2016). On the convergence of decentralized gradient descent. STAM Journal on Optimization, 26(3), 1835-1854.

1.3. tvopt.distributed_solvers module 25

tvopt, Release 0.2.7

* step (float) — The step-size.

* x_0 (ndarray, optional) - The initial states of the nodes. This can be either an ndarray
of suitable size with the last dimension indexing the nodes, or a scalar. If it is a scalar then
the same initial value is used for all components of the states.

* num_iter (int, optional) - The number of iterations to be performed.

Returns
x — The nodes’ states after num_iter iterations.

Return type
ndarray

References

tvopt.distributed_solvers.dual_ascent (problem, step, w_0=0, num_iter=100)
Distributed dual ascent a.k.a. dual decomposition (DD).

This function implements the DD algorithm'". The algorithm is characterized by the following updates
g’ = argmin, { f(z) — (I - W)z, w")}

wt =w' — oI - W)z!
for ¢ = 0,1,..., where w is the vector of Lagrange multipliers. The algorithm is guaranteed to converge to the
optimal solution.

Parameters

e system (A dictionary containing the network describing the
multi-agent) — and the cost describing the problem.

* step (float) — The step-size.

e w_0 (ndarray, optional) - The initial value of the dual nodes’ states. This can be either
an ndarray of suitable size with the last dimension indexing the nodes, or a scalar. If it is a
scalar then the same initial value is used for all components.

e num_iter (int, optional)— The number of iterations to be performed.
Returns
* x (ndarray) — The nodes’ states after num_iter iterations.

* w (ndarray) — The dual variables of the nodes after num_iter iterations.

References

tvopt.distributed_solvers.gossip_consensus (net, x_0, num_iter=100, g=0.5)
Average consensus.
Compute the average consensus over the network net with initial states x_0 using the symmetric gossip protocol.
Parameters
* net (networks.Network) — The network describing the multi-agent system.

* x_0 (ndarray) — The initial states in a ndarray, with the last dimension indexing the nodes.

10 Simonetto, A. (2018). Dual Prediction—Correction Methods for Linearly Constrained Time-Varying Convex Programs. IEEE Transactions on
Automatic Control, 64(8), 3355-3361.

26 Chapter 1. tvopt package

tvopt, Release 0.2.7

* num_iter (int, optional) - The number of iterations to be performed.

* q(float, optional)- The weight used in the convex combination of the nodes that com-
municate at each iteration.

Returns
x — The nodes’ states after num_iter iterations.

Return type
ndarray

tvopt.distributed_solvers.max_consensus (net, x_0, num_iter=100)

Max consensus.
Compute the maximum of the nodes’ states x_0.
Parameters
* net (networks.Network) — The network describing the multi-agent system.
* x_0 (ndarray) — The initial states in a ndarray, with the last dimension indexing the nodes.
e num_iter (int, optional) - The number of iterations to be performed.

Returns
x — The nodes’ states after num_iter iterations.

Return type
ndarray

tvopt.distributed_solvers.nids(problem, step, x_0=0, num_iter=100)
Network InDependent Step-size algorithm (NIDS).

This function implements the NIDS algorithm proposed in'!. The algorithm is characterized by the following

updates
y =y — 2t — W2z’ — ' — diag(a)(Vf(z)) — V(@) (1.5)
= proxag((}yé)
for ¢ =0,1,..., where a is a column vector containing the independent step-sizes of the nodes, and

W =1 + cdiag(a)(W —I)

with ¢ = 0.5/ max;{«a; }. The algorithm is guaranteed to converge to the optimal solution.
Parameters

* problem (dict) — A dictionary containing the network describing the multi-agent system
and the costs describing the (possibly composite) problem. The dictionary should contain f
and the network, and optionally g.

* step (float or list) — A common step-size or a list of local step-sizes, one for each
node.

* x_0 (ndarray, optional) - The initial states of the nodes. This can be either an ndarray
of suitable size with the last dimension indexing the nodes, or a scalar. If it is a scalar then
the same initial value is used for all components of the states.

e num_iter (int, optional)— The number of iterations to be performed.

1 Li, Z., Shi, W., & Yan, M. (2019). A decentralized proximal-gradient method with network independent step-sizes and separated convergence
rates. IEEE Transactions on Signal Processing, 67(17), 4494-4506.

1.3. tvopt.distributed_solvers module 27

tvopt, Release 0.2.7

Returns
X — The nodes’ states after num_iter iterations.

Return type
ndarray

References

tvopt.distributed_solvers.pg_extra(problem, step, x_0=0, num_iter=100)
Proximal gradient exact first-order algorithm (PG-EXTRA).

This function implements the PG-EXTRA algorithm proposed in'? (see also'? for the gradient-only version,
EXTRA). The algorithm is characterized by the following updates

y =y 4 Wa' — Wz —a(Vh) - V@) (1.7
il = proxag((lyg)

for{ =0,1,..., where W = (I + W)/2. The algorithm is guaranteed to converge to the optimal solution.
Parameters

* problem (dict) — A dictionary containing the network describing the multi-agent system
and the costs describing the (possibly composite) problem. The dictionary should contain f
and the network, and optionally g.

* step (float) — The step-size.

* x_0 (ndarray, optional) - The initial states of the nodes. This can be either an ndarray
of suitable size with the last dimension indexing the nodes, or a scalar. If it is a scalar then
the same initial value is used for all components of the states.

* num_iter (int, optional) - The number of iterations to be performed.

Returns
x — The nodes’ states after num_iter iterations.

Return type
ndarray

References

tvopt.distributed_solvers.prox_aac(problem, step, x_0=0, num_iter=100, consensus_steps=[True, True,
True])

Proximal adapt-and-combine (Prox-AAC).

This function implements the Prox-AAC algorithm (see! for the gradient only version). The algorithm is char-
acterized by the following updates

2t = Wlxz

y' =2"—aVf()

12 Shi, W., Ling, Q., Wu, G., & Yin, W. (2015). A proximal gradient algorithm for decentralized composite optimization. IEEE Transactions on
Signal Processing, 63(22), 6013-6023.
13 Shi, W., Ling, Q., Wu, G., & Yin, W. (2015). Extra: An exact first-order algorithm for decentralized consensus optimization. SIAM Journal
on Optimization, 25(2), 944-966.
! Chen, J., & Sayed, A. H. (2013). Distributed Pareto optimization via diffusion strategies. IEEE Journal of Selected Topics in Signal Processing,
7(2), 205-220.

28 Chapter 1. tvopt package

tvopt, Release 0.2.7

$Z+1 = W3 prOXag (W2y€)
for { =0,1,..., where W1, W5 and W 3 are doubly stochastic matrices (or the identity).
Parameters

» problem (dict) — A dictionary containing the network describing the multi-agent system
and the costs describing the (possibly composite) problem. The dictionary should contain f
and the network, and optionally g.

* step (float or list) — A common step-size or a list of local step-sizes, one for each
node.

* x_0 (ndarray, optional) - The initial states of the nodes. This can be either an ndarray
of suitable size with the last dimension indexing the nodes, or a scalar. If it is a scalar then
the same initial value is used for all components of the states.

e num_iter (int, optional)— The number of iterations to be performed.

* consensus_steps (list) — A list specifying which consensus steps to perform; the list
must have three elements that can be interpreted as bools.

Returns
x — The nodes’ states after num_iter iterations.

Return type
ndarray

References

tvopt.distributed_solvers.prox_ed(problem, step, x_0=0, num_iter=100)

Proximal exact diffusion (Prox-ED).

This function implements the Prox-ED algorithm'#. The algorithm is characterized by the following updates

y' =zt —aVf(zh (1.9)
o =2 1y (o)
2 =(Wht$

= proxc(;(kﬁ)

for/ =0,1,..., where W = (I + W) /2. The algorithm is guaranteed to converge to the optimal solution.
Parameters

* problem (dict) — A dictionary containing the network describing the multi-agent system
and the costs describing the (possibly composite) problem. The dictionary should contain f
and the network, and optionally g.

* step (float) — The step-size.

* x_0 (ndarray, optional) - The initial states of the nodes. This can be either an ndarray
of suitable size with the last dimension indexing the nodes, or a scalar. If it is a scalar then
the same initial value is used for all components of the states.

e num_iter (int, optional) - The number of iterations to be performed.

Returns
x — The nodes’ states after num_iter iterations.

145 A Alghunaim, E. Ryu, K. Yuan, and A. H. Sayed, “Decentralized Proximal Gradient Algorithms with Linear Convergence Rates,” IEEE
Transactions on Automatic Control, 2020.

1.3. tvopt.distributed_solvers module 29

tvopt, Release 0.2.7

Return type
ndarray

References

tvopt.distributed_solvers.ratio_consensus (net, x_0, num_iter=100)

Ratio consensus.
Compute the average consensus over the network ner with initial states x_0 using the ratio consensus protocol.
Parameters
* net (networks.Network) — The network describing the multi-agent system.
* x_0 (ndarray) — The initial states in a ndarray, with the last dimension indexing the nodes.
e num_iter (int, optional)— The number of iterations to be performed.

Returns
x — The nodes’ states after num_iter iterations.

Return type
ndarray

1.4 tvopt.networks module

Network tools.

class tvopt.networks.DynamicNetwork(nets, t s=1)

Bases: Network
Time-varying network.

This class creates a time-varying network from a list of network objects, and possibly a sampling time that
specifies how often the network changes.

broadcast (¢, *args, **kwargs)

Broadcast transmission.

This method implements a broadcast transmission in which a node sends the same packet to all its neighbors.
The packet is also transmitted to the node itself. The method is implemented using the send method.

Parameters
¢ sender (int) — The index of the transmitting node.
» packet (array_like) — The packet to ne communicated.

consensus (¢, *args, **kwargs)

Consensus mixing.

This method implements a consensus step over the network, mixing the given nodes’ states using the weight
matrix of the network or a different one.

Parameters

* x (array_like)— The nodes’ local states in an array with the last dimension indexing the
nodes.

e weights (ndarray, optional)- The consensus weight matrix to be used instead of the
one created at initialization.

30 Chapter 1. tvopt package

tvopt, Release 0.2.7

Returns
y — The local states after a consensus step.

Return type
ndarray

max_consensus (¢, *args, **kwargs)

Max-consensus.

This method implements a step of max-consensus, where each node selects the (element-wise) maximum
between the packets received from its neighbors and its own state. See' for a reference on max-consensus.

Parameters

X (array_like) — The nodes’ local states in an array with the last dimension indexing the
nodes.

Returns
x — The local states after a max-consensus step.

Return type
ndarray

References

sample ()
Sample the dynamic network.
This method returns the network object that is active at time .

Parameters
t (float) — The time when the network should be sampled.

Returns
The sampled network.

Return type
Network

send(t, *args, **kwargs)

Node-to-node transmission (sender phase).

This method simulates a node-to-node transmission by storing the packet to be communicated in the buffer.
In particular, if 7 is the sender and j the receiver, then the packet is introduced in buffer with keyword (7, 7).

Note that older information (if any) in the buffer is overwritten whenever send is called.
Parameters
¢ sender (int) — The index of the transmitting node.
e receiver (int) — The index of the recipient.
» packet (array_like) — The packet to ne communicated.

class tvopt.networks.LossyNetwork(adj mat, loss_prob, weights=None)
Bases: Network

Network with random communication failures.

I5 E Tutzeler, P. Ciblat, and J. Jakubowicz, “Analysis of Max-Consensus Algorithms in Wireless Channels,” IEEE Transactions on Signal Pro-
cessing, vol. 60, no. 11, pp. 6103-6107, Nov. 2012.

1.4. tvopt.networks module 31

tvopt, Release 0.2.7

Representation of a connected, undirected network, whose communication protocol is subject to packet losses.
Packet sent from a node to another may be lost with a certain probability.

send (sender, receiver, packet)

Node-to-node transmission (sender phase).

This method simulates a node-to-node transmission by storing the packet to be communicated in the buffer.
In particular, if 4 is the sender and j the receiver, then the packet is introduced in buffer with keyword (7, 7).

Note that older information (if any) in the buffer is overwritten whenever send is called.
Parameters
¢ sender (int) — The index of the transmitting node.
» receiver (int) — The index of the recipient.

» packet (array_like) — The packet to ne communicated.

class tvopt.networks.Network(adj_mat, weights=None)

Bases: object
Representation of an undirected network.

The class implements an undirected network defined from the adjacency matrix. The class provides methods for
different communication protocols, such as node-to-node and broadcast.

Transmissions are implemented via the buffer attribute of the network: the sender stores the packet to be trans-
mitted in the buffer dictionary, specifying the recipient, which can then access the packet.

By convention, the nodes in the network are indexed from 0 to N — 1, where N is the total number of nodes.

adj_mat

The adjacency matrix of the network.

Type

ndarray

The number of nodes in the network.

Type

ndarray

weights

The consensus weight matrix, if not specified in the constructor this is the Metropolis-Hastings weight
martrix.

Type

ndarray
neighbors

A list whose i-th element is a list of node 7’s neighors.

Type
list
degrees
The number of neighbors of each node.

Type

list

32

Chapter 1. tvopt package

tvopt, Release 0.2.7

buffer

The dictionary used for node-to-node transmissions.

Type
dict

broadcast (sender, packet)

Broadcast transmission.

This method implements a broadcast transmission in which a node sends the same packet to all its neighbors.
The packet is also transmitted to the node itself. The method is implemented using the send method.

Parameters
¢ sender (int) — The index of the transmitting node.
e packet (array_like) — The packet to ne communicated.
consensus (x, weights=None)

Consensus mixing.

This method implements a consensus step over the network, mixing the given nodes’ states using the weight
matrix of the network or a different one.

Parameters

* X (array_like)— The nodes’ local states in an array with the last dimension indexing the
nodes.

* weights (ndarray, optional)- The consensus weight matrix to be used instead of the
one created at initialization.

Returns
y — The local states after a consensus step.

Return type
ndarray
max_consensus (x)
Max-consensus.
This method implements a step of max-consensus, where each node selects the (element-wise) maximum
between the packets received from its neighbors and its own state. See'® for a reference on max-consensus.

Parameters
X (array_like) — The nodes’ local states in an array with the last dimension indexing the
nodes.

Returns
x — The local states after a max-consensus step.

Return type
ndarray

16 F, Tutzeler, P. Ciblat, and J. Jakubowicz, “Analysis of Max-Consensus Algorithms in Wireless Channels,” TEEE Transactions on Signal Pro-
cessing, vol. 60, no. 11, pp. 6103—-6107, Nov. 2012.

1.4. tvopt.networks module 33

tvopt, Release 0.2.7

References

receive (receiver, sender, default=0, destructive=True)

Node-to-node transmission (receiver phase).

This method simulates the reception of a packet previously transmitted using the send method. In patricular,
the method accesses the packet in the buffer dictionary. If the packet is not present, a default value is
returned.

Reads from the buffer can be destructive, meaning that the packet is read and removed, which is the default,
or not.

Parameters
» receiver (int) — The index of the recipient.
¢ sender (int) — The index of the transmitting node.

e default (array_like, optional) - The value returned when a packet from sender to
receiver is not found in the buffer.

* destructive (bool, optional) — Specifies if the packet should be removed from the
buffer after being read (which is the default) or not.

Returns
The packet or a default value.

Return type
array_like

send (sender, receiver, packet)
Node-to-node transmission (sender phase).

This method simulates a node-to-node transmission by storing the packet to be communicated in the buffer.
In particular, if 7 is the sender and j the receiver, then the packet is introduced in buffer with keyword (7, 7).

Note that older information (if any) in the buffer is overwritten whenever send is called.
Parameters
* sender (int) — The index of the transmitting node.
» receiver (int) — The index of the recipient.

» packet (array_like) — The packet to ne communicated.

class tvopt.networks.NoisyNetwork(adj mat, noise_var, weights=None)

Bases: Network
Network with Gaussian communication noise.

Representation of a connected, undirected network, whose communication protocol is subject to additive white
Gaussian noise. The network’s transmission methods add normal noise to all packets (unless they are sent from
a node to itself).

send (sender, receiver, packet)

Node-to-node transmission (sender phase).

This method simulates a node-to-node transmission by storing the packet to be communicated in the buffer.
In particular, if 7 is the sender and j the receiver, then the packet is introduced in buffer with keyword (7, 7).

Note that older information (if any) in the buffer is overwritten whenever send is called.

Parameters

34

Chapter 1. tvopt package

tvopt, Release 0.2.7

» sender (int) — The index of the transmitting node.
e receiver (int) — The index of the recipient.
e packet (array_like) — The packet to ne communicated.

class tvopt.networks.QuantizedNetwork(adj mat, step, thresholds=None, weights=None)

Bases: Network
Network with quantized communications.

Representation of a connected, undirected network, whose communications are quantized. The network’s trans-
mission methods quantize all packets (unless they are sent from a node to itself).

send (sender, receiver, packet)

Node-to-node transmission (sender phase).

This method simulates a node-to-node transmission by storing the packet to be communicated in the buffer.
In particular, if 4 is the sender and j the receiver, then the packet is introduced in buffer with keyword (7, 7).

Note that older information (if any) in the buffer is overwritten whenever send is called.
Parameters
* sender (int) — The index of the transmitting node.
» receiver (int) — The index of the recipient.
¢ packet (array_like) — The packet to ne communicated.

tvopt.networks.circle_graph(N)
Generate a circle graph.

Parameters
N (int) — Number of nodes in the graph.

Returns
adj_mat — Adjacency matrix of the generated graph.

Return type
ndarray

See also:

circulant_graph
Circulant graph generator

tvopt.networks.circulant_graph(N, num_conn)

Generate a circulant graph.
Parameters
* N (int) — Number of nodes in the graph.
* num_conn (int) — Number of neighbors on each side of a node.

Returns
adj_mat — Adjacency matrix of the generated graph.

Return type
ndarray

1.4. tvopt.networks module 35

tvopt, Release 0.2.7

Notes

If num_conn is larger than N / 2 a complete graph is returned.

tvopt.networks.complete_graph(N)

Generate a complete graph.

Parameters
N (int) — Number of nodes in the graph.

Returns
adj_mat — Adjacency matrix of the generated graph.

Return type
ndarray

See also:

circulant_graph
Circulant graph generator

tvopt.networks.erdos_renyi (N, prob)

Generate a random Erdos-Renyi graph.
Parameters
* N (int) — Number of nodes in the graph.
» prob (float) — The probability of adding an edge between any two nodes.

Returns
adj_mat — Adjacency matrix of the generated graph.

Return type
ndarray

Raises
ValueError. —

tvopt.networks.incidence_matrix(adj_mat, n=1I)
Build the incidence matrix.

The edges e = (i, j) are ordered with ¢ < j, so that in the e-th column the i-th element is 1 and the j-th is —1
(the remaining are of course 0).

Parameters
* adj_mat (ndarray) — Adjacency matrix describing the graph.
* n(int, optional) - Size of the local states.

Returns
incid_mat — The incidence matrix.

Return type
ndarray

tvopt.networks.is_connected(adj_mat)
Verify if a graph is connected.

Parameters
adj_mat (ndarray) — Adjacency matrix describing the graph.

36 Chapter 1. tvopt package

tvopt, Release 0.2.7

Returns
True if the graph is connected, False otherwise.

Return type
bool

Notes
The connectedness of the graph is checked by verifying whether the /NV-th power of the adjacency matrix plus
the identity is a full matrix (no zero elements), with /N the number of nodes.

tvopt.networks.metropolis_hastings(adj_mat)

Compute a consensus matrix based on the Metropolis-Hastings rule.

The Metropolis-Hastings rule generates a matrix W with off-diagonal elements equal to:

1
Wiy = 1+ max{di7 dj}

where ¢ is a node index and j # 4 the index of one of its neighbors, and d;, d; are their respective degrees. The
diagonal elements are assigned as:

wi; =1— Z Wi
JEN;
to guarantee double stochasticity.

Parameters
adj_mat (ndarray) — Adjacency matrix describing the graph.

Returns
mh_mat — Metropolois-Hastings consensus matrix.

Return type
ndarray

tvopt.networks.random_graph(N, radius)

Generate a random geometric graph.
Parameters
* N (int) — Number of nodes in the graph.
* radius (float) — Radius of each node’s neighborhood, must be in [0, 1).

Returns
adj_mat — Adjacency matrix of the generated graph.

Return type
ndarray

Raises
ValueError. —

1.4. tvopt.networks module 37

tvopt, Release 0.2.7

Notes

The function recursively generates random positions for the nodes on the [0, 1] x [0, 1] square, and then builds the
graph by setting as neighbors each pair of nodes within a distance no larger than radius. The process is repeated
until the result is a connected graph. For this reason, combinations of small N and radius can yield exceedingly
long computation times. If the computation does not succeed after 2500 iterations, an error is raised.

tvopt.networks.star_graph(N)
Generate a star graph.

Parameters
N (int) — Number of nodes in the graph.

Returns
adj_mat — Adjacency matrix of the generated graph.

Return type
ndarray

1.5 tvopt.prediction module

Cost prediction tools.

class tvopt.prediction.ExtrapolationPrediction(cost, order=2)

Bases: Prediction
Extrapolation-based prediction.

This prediction strategy, proposed in'’, predicts the cost at time t 1 as:

I
f@itien) =Y lif (@ teivn)
=1

where I € N denotes the order, that is, the number of past functions to use, and with coefficients:

4 = H L

— 1
1<G<, i

update ()
Update the current prediction.
This method updates the current prediction by building a new predicted cost using the samples observed up

to time ¢. By default this method samples the dynamic cost, and should be overwritten when implementing
a custom prediction strategy.

Parameters
t (float) — The time of the last sampled cost.

17 N. Bastianello, A. Simonetto, and R. Carli, “Primal and Dual Prediction-Correction Methods for Time-Varying Convex Optimization,”
arXiv:2004.11709 [cs, math], Oct. 2020. Available: http://arxiv.org/abs/2004.11709.

38 Chapter 1. tvopt package

tvopt, Release 0.2.7

class tvopt.prediction.Prediction(cost)
Bases: Cost

Prediction of a dynamic cost.

This class creates a cost object that predicts a given dynamic function. The object stores a dynamic cost and a
predicted cost, which can be modified using new information through the method update.

function(x, **kwargs)

An evaluation of the cost. Implement if needed.
Parameters
e X (array_1like) — The x where the cost should be evaluated.
* *args — The time at which the cost should be evaluated. Not required if the cost is static.
o **kwargs — Any other required argument.

gradient (x, **kwargs)

An evaluation of the cost’s gradient or sub-gradient. Implement if needed.
Parameters
e x (array_like) — The x where the (sub-)gradient should be evaluated.

¢ *args — The time at which the (sub-)gradient should be evaluated. Not required if the cost
is static.

e **kwargs — Any other required argument.

hessian(x, **kwargs)
An evaluation of the cost’s Hessian. Implement if needed.

Parameters
e X (array_1like) — The x where the Hessian should be evaluated.

* *args — The time at which the Hessian should be evaluated. Not required if the cost is
static.

e **kwargs — Any other required argument.
proximal (x, penalty=1, **kwargs)
An evaluation of the cost’s proximal.

If this method is not overwritten, the default behavior is to recursively compute the proximal via a gradient
or Newton backtracking algorithm. See compute_proximal for the function that is used for this purpose.

Parameters
* x (array_like) — The x where the proximal should be evaluated.

e *args — The time at which the proximal should be evaluated. Not required if the cost is
static.

* penalty (float, optional) — The penalty parameter p for the proximal evaluation.
Defaults to 1.

o **kwargs — Any other required argument.

1.5. tvopt.prediction module 39

tvopt, Release 0.2.7

update(t, *args, **kwargs)
Update the current prediction.
This method updates the current prediction by building a new predicted cost using the samples observed up

to time . By default this method samples the dynamic cost, and should be overwritten when implementing
a custom prediction strategy.

Parameters
t (float) — The time of the last sampled cost.

class tvopt.prediction.TaylorPrediction(cost)

Bases: Prediction
Taylor expansion-based prediction.

This prediction strategy, proposed in'® and see also'”, predicts the cost at time ¢ ; using its Taylor expansion
around ¢, and a given xj:

F@itrin) = f@ity) + (Vaf(@rste), @ — zx) + TV f(@rs t) + (T2/2) Vi f (2 te) +

+ Ts(Viz f(Tr; i), —x8) + %(-’E —) Vau f (@r; ts) (T — 21

where T is the sampling time.

References

update(t, x, gradient_only=True, **kwargs)
Update the current prediction.
This method updates the current prediction by building a new predicted cost using the samples observed up

to time ¢. By default this method samples the dynamic cost, and should be overwritten when implementing
a custom prediction strategy.

Parameters
t (float) — The time of the last sampled cost.

1.6 tvopt.sets module

Set template and examples.

class tvopt.sets.AffineSet(A, b)

Bases: Set
Affine set.

This class implements:

{r e R" | Az = b}

18 A Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A Class of Prediction-Correction Methods for Time-Varying Convex Opti-
mization,” IEEE Transactions on Signal Processing, vol. 64, no. 17, pp. 4576-4591, Sep. 2016.

19 N. Bastianello, A. Simonetto, and R. Carli, “Primal and Dual Prediction-Correction Methods for Time-Varying Convex Optimization,”
arXiv:2004.11709 [cs, math], Oct. 2020. Available: http://arxiv.org/abs/2004.11709.

40

Chapter 1. tvopt package

tvopt, Release 0.2.7

for given matrix A € R™*"™ and vector b € R™.

contains(x)
Check if the input belongs to the set.

projection(x)
Project the input onto the set.

class tvopt.sets.Ball(center, radius)
Bases: Set

Ball set.

This class implements:

{reR"[|z—cf| <r}

for a center ¢ and radius r > 0.

contains(x)
Check if the input belongs to the set.

projection(x)
Project the input onto the set.

class tvopt.sets.Ball_l1(center, radius)
Bases: Set

/1-ball set.

This class implements:

{zeR"|[lz —cfp <r}

for a center ¢ and radius r > 0.

contains(x)
Check if the input belongs to the set.

projection(x, rol=1e-05)

Project the input onto the set.

class tvopt.sets.Box(/, u, n=1)
Bases: Set

Box set.

This class implements:

{zeR"|I<z<u}

with bounds [, u either scalar (applied element-wise) or vectors.

1.6. tvopt.sets module

41

tvopt, Release 0.2.7

contains(x)
Check if the input belongs to the set.

projection(x)

Project the input onto the set.

class tvopt.sets.Halfspace(a, b)
Bases: Set

Halfspace.

This class implements:

{x €R" | (a,x) < b)

for given vetor a € R™ and scalar b € R.

contains(x)
Check if the input belongs to the set.

projection(x)

Project the input onto the set.

class tvopt.sets.IntersectionSet (*sets)
Bases: Set

Intersection of sets.

Given the sets S;, 7 = 1,..., N this class implements

contains(x)
Check if the input belongs to the set.

projection(x, *args, **kwargs)
Projection onto the intersection.

This method returns an approximate projection onto the intersection of sets, computed using the method of
alternating projections.

See also:

alternating_projections
method of alternating projection

class tvopt.sets.NonnegativeOrthant (n)
Bases: Set
Non-negative orthant.

This class implements:

42 Chapter 1. tvopt package

tvopt, Release 0.2.7

{r eR" |z >0}

where z > 0 if = is component-wise non-negative.

contains(x)
Check if the input belongs to the set.

projection(x)
Project the input onto the set.

class tvopt.sets.R(*dims)
Bases: Set

The underlying space.
This class implements the underlying space Rt *"2%-

contains(x)
Check if the input belongs to the set.

projection(x)

Project the input onto the set.

class tvopt.sets.ScaledSet(s, ¢)
Bases: Set

Scaled set.

Given a set S and a scalar c, this class defines

{cx Vz € S}.

contains(x)
Check if the input belongs to the set.

projection(x, *args, **kwargs)

Project the input onto the set.

class tvopt.sets.Set (*dims)

Bases: object
Template for a set.

This class defines a non-empty, closed, convex setin R™:*"2*---_ These objects are defined by a contains method
(to check if an input belongs to the set) and a projection method.

Sets can be translated and scaled (via the respective methods). The contains method can also be accessed via the
built-in in operator. Using + it is possible to intersect sets.

shape
The dimensions of the underlying space.
Type
tuple

1.6. tvopt.sets module 43

tvopt, Release 0.2.7

ndim

The number of dimensions of the underlying space.

Type

int
size
The product of each dimension’s size.

Type
int

check_input (x)

Check dimension of input.

This method verifies if the argument x belong to the space underlying the set, possibly reshaping it. If it is
not compatible or cannot be reshaped (using numpy’s broadcasting rules), and exception is raised.

Parameters
X (array_like) — The input to be checked.

Returns
The (possibly reshaped) input if it is compatible with the space.

Return type
ndarray

contains(x)
Check if the input belongs to the set.

projection(x, *args, **kwargs)

Project the input onto the set.

scale(c)
Scale the set.

translate(x)

Translate the set.

class tvopt.sets.T(t_s, t_min=0, t_max=inf)
Bases: Set

Set of sampling times.

This class implements the set of sampling times:

{thO,kGN}

with t511 — tx = T} for a sampling time 7.
check_input (1)
Check dimension of input.

This method verifies if the argument x belong to the space underlying the set, possibly reshaping it. If it is
not compatible or cannot be reshaped (using numpy’s broadcasting rules), and exception is raised.

Parameters
X (array_like) — The input to be checked.

44 Chapter 1. tvopt package

tvopt, Release 0.2.7

Returns
The (possibly reshaped) input if it is compatible with the space.

Return type
ndarray

contains(?)
Check if the input belongs to the set.

projection(t)
Project the input onto the set.

scale(c)
Scale the set.

translate(?)
Translate the set.

class tvopt.sets.TranslatedSet(s, 1)
Bases: Set

Translated set.

Given a set S and a vector ¢, this class defines

{z +tVx e S}.

contains(x)
Check if the input belongs to the set.

projection(x, *args, **kwargs)
Project the input onto the set.

tvopt.sets.alternating_projections (sets, x, tol=1e-10, num_iter=10)

Method of alternating projections.

This function returns a point in the intersection of the given convex sets, computed using the method of alternating
projections (MAP)?°.

Parameters
e sets (1ist) — The list of sets.
* X (array_like) — The starting point.

* tol (float, optional) — The stopping condition. If the difference between consecutive
iterates is smaller than or equal to tol, then the function returns. Defaults to 10719,

* num_iter (int, optional) - The maximum number of iterations of the projection algo-
rithm. Defaults to 1000. This stopping condition is enacted if the algorithm does not reach
tol.

Returns
X — A point in the intersection.

Return type
ndarray

20 H. Bauschke and V. Koch, “Projection Methods: Swiss Army Knives for Solving Feasibility and Best Approximation Problems with Halfs-
paces,” in Contemporary Mathematics, vol. 636, S. Reich and A. Zaslavski, Eds. Providence, Rhode Island: American Mathematical Society, 2015,
pp. 1-40.

1.6. tvopt.sets module 45

tvopt, Release 0.2.7

References

1.7 tvopt.solvers module

Solvers.

tvopt.solvers.admm(problem, penalty, rel=1, w_0=0, num_iter=100, tol=None)
Alternating direction method of multipliers (ADMM).

This function implements the ADMM to solve the constrained problem

min {f(z) +9(y)} (1.13)
s.t. Az + Byl-14)

The algorithm is characterized by the updates:

' = arg min, {f(a:) — (2!, Az) + gHAx - c||2} (1.15)
w’ = 2¢ — p(Azt1-16)
y' = argmin, {g(y) — (2’ — ', By) + 2| Buijth

u’ = 2w’ — 2* — (1B
2 =28 4 2a(ut Aab)

for a given penalty p > 0 and « € (0, 1] is the relaxation constant.
Parameters

» problem (dict) — Problem dictionary defining the costs f and g, and the constraints A, B
and c.

* penalty (float) — The algorithm’s penalty.
e rel (float, optional) - The relaxation constant.

* w_0(array_like, optional)-The dualinitial condition. This can be either an ndarray of
suitable size, or a scalar. If it is a scalar then the same initial value is used for all components
of w.

e num_iter (int, optional)— The number of iterations to be performed.

» tol (float, optional) - If given, this argument specifies the tolerance ¢ in the dual stop-
ping condition [w‘*! — w| < t.

Returns
* X (ndarray) — The approximate primal solution & after num_iter iterations.
* y (ndarray) — The approximate primal solution y after num_iter iterations.
* w (ndarray) — The approximate dual solution after num_iter iterations.

tvopt.solvers.backtracking_gradient (problem, r=0.2, c=0.5, x_0=0, num_iter=100, tol=None)
Gradient method with backtracking line search.

This function implements the gradient method

46 Chapter 1. tvopt package

tvopt, Release 0.2.7

x5+1 _ m[o O/Vf(.’lfz)

where of is chosen via a backtracking line search. In particular, at each iteration we start with ol = 1 and, while

fz* —a'Vf(2h) > f&") - ca’ |V f(2")]?

we set of = ra’ until a suitable step is found.

Note that the backtracking line search does not stop until a suitable step-size si found; this means that large r
parameters may result in big computation times.

Parameters
» problem (dict) — Problem dictionary defining the cost f.

e r (float, optional) — The value by which a candidate step-size is multiplied if it does
not satisfy the descent condition. r should be in (0, 1).

* c(float, optional)- The parameter defining the descent condition that a candidate step
must satisfy.

* x_0 (array_like, optional) — The initial condition. This can be either an ndarray of
suitable size, or a scalar. If it is a scalar then the same initial value is used for all components
of x.

e num_iter (int, optional)— The number of iterations to be performed.

* tol (float, optional) - If given, this argument specifies the tolerance ¢ in the stopping
condition |lz‘*! — zf| < ¢.

Returns
x — The approximate solution after num_iter iterations.

Return type
ndarray

tvopt.solvers.dual_ascent (problem, penalty, w_0=0, num_iter=100, tol=None)

Dual ascent.
This function implements the dual ascent to solve the constrained problem
min f(z) s.t. Az =e¢.
x
The algorithm is characterized by the updates:
g’ = argmin, { f(z) — (w’, Az)} (1.20)
w't = w’ — p(Axf12¢)

for a given penalty p > 0.
Parameters

» problem (dict) — Problem dictionary defining the cost f, and the constraints A and c.

1.7. tvopt.solvers module 47

tvopt, Release 0.2.7

» penalty (float) — The algorithm’s penalty.

* w_0(array_like, optional)-The dualinitial condition. This can be either an ndarray of
suitable size, or a scalar. If it is a scalar then the same initial value is used for all components
of w.

* num_iter (int, optional) - The number of iterations to be performed.

* tol (float, optional)- If given, this argument specifies the tolerance ¢ in the dual stop-
ping condition [w’™! —w’|| < t.

Returns
* X (ndarray) — The approximate primal solution after num_iter iterations.
* w (ndarray) — The approximate dual solution after num_iter iterations.

tvopt.solvers.dual_£fbs(problem, penalty, rel=1, w_0=0, num_iter=100, tol=None)
Dual forward-backward splitting.

This function implements the dual FBS to solve the constrained problem

min {f(x) +9(y)} (1.22)
s.t. Az + Byl2®)

The algorithm is characterized by the updates:

z! = argmin, {f(z) — (w, Az)} (1.24)
u’ = w’ — p(Az{1:26)
y" = argmin, {g(y) — (u’, By) + gIIB@lH?é)

wt = (1 - a)w’ + a(u® — (BYY)

for a given penalty p > 0 and « € (0, 1] is the relaxation constant.
Parameters

» problem (dict) — Problem dictionary defining the costs f and g, and the constraints A, B
and c.

* penalty (float) — The algorithm’s penalty.
e rel (float, optional) — The relaxation constant.

* w_0(array_like, optional)-The dualinitial condition. This can be either an ndarray of
suitable size, or a scalar. If it is a scalar then the same initial value is used for all components
of w.

e num_iter (int, optional) - The number of iterations to be performed.

e tol (float, optional)- If given, this argument specifies the tolerance ¢ in the dual stop-
ping condition [w’! —w’|| < t.

Returns
* X (ndarray) — The approximate primal solution & after num_iter iterations.
* y (ndarray) — The approximate primal solution y after num_iter iterations.

* w (ndarray) — The approximate dual solution after num_iter iterations.

48 Chapter 1. tvopt package

tvopt, Release 0.2.7

tvopt.solvers. fbs(problem, step, rel=1, x_0=0, num_iter=100, tol=None)
Forward-backward splitting (FBS).

This function implements the forward-backward splitting (a.k.a. proximal gradient method) to solve the com-
posite problem

min{f(z) + 9(2)}.

The algorithm is characterized by the update:

™ = (1-a)z’ + aprox,,(z‘ — pV f(z"))

where p > 0 is the step-size and v € (0, 1] is the relaxation constant.
Parameters
* problem (dict) — Problem dictionary defining the costs f and g.
» step (float) — The algorithm’s step-size.
e rel (float, optional) — The relaxation constant.

* x_0 (array_like, optional) — The initial condition. This can be either an ndarray of
suitable size, or a scalar. If it is a scalar then the same initial value is used for all components
of x.

e num_iter (int, optional)— The number of iterations to be performed.

* tol (float, optional)— If given, this argument specifies the tolerance ¢ in the stopping
condition |lz‘*! — zf| < ¢.

Returns
x — The approximate solution after num_iter iterations.

Return type
ndarray

tvopt.solvers.gradient (problem, step, x_0=0, num_iter=100, tol=None)
Gradient method.

This function implements the gradient method

i =z — aVf(zh)

for a given step-size o > 0.
Parameters
» problem (dict) — Problem dictionary defining the cost f.
» step (float)— The algorithm’s step-size.

* x_0 (array_like, optional) — The initial condition. This can be either an ndarray of
suitable size, or a scalar. If it is a scalar then the same initial value is used for all components
of x.

e num_iter (int, optional)— The number of iterations to be performed.

1.7. tvopt.solvers module 49

tvopt, Release 0.2.7

» tol (float, optional) - If given, this argument specifies the tolerance ¢ in the stopping
condition |lz‘*! — zf| < ¢.

Returns
x — The approximate solution after num_iter iterations.

Return type
ndarray

tvopt.solvers.mm(problem, penalty, w_0=0, num_iter=100, tol=None)
Method of multipliers (MM).

This function implements the method of multipliers to solve the constrained problem

min f(z) s.t. Az = ¢.

The algorithm is characterized by the updates:

2! = arg min, {f(x) — (w', Az) + gHAx - c||2} (1.28)

w't = w’ — p(Azl1-20)

for a given penalty p > 0.
Parameters
* problem (dict) — Problem dictionary defining the cost f, and the constraints A and c.
* penalty (float) — The algorithm’s penalty.

* w_0(array_like, optional)-The dualinitial condition. This can be either an ndarray of
suitable size, or a scalar. If it is a scalar then the same initial value is used for all components
of w.

e num_iter (int, optional)— The number of iterations to be performed.

* tol (float, optional)- If given, this argument specifies the tolerance ¢ in the dual stop-
ping condition [w‘*! —wf|| < t.

Returns
* X (ndarray) — The approximate primal solution after num_iter iterations.
* w (ndarray) — The approximate dual solution after num_iter iterations.

tvopt.solvers.newton(problem, r=0.2, c=0.5, x_0=0, num_iter=100, tol=None)
Newton method with backtracking line search.

This function implements the Newton method

xf-{-l _ xé _ aév2f(m€)—1vf(z2)

where o is chosen via a backtracking line search. In particular, at each iteration we start with a = 1 and, while

f@* =o' V2 f (@) "IV f (")) > f(a") - ||V F ()|

50 Chapter 1. tvopt package

tvopt, Release 0.2.7

we set o’ = ra’ until a suitable step is found.

Note that the backtracking line search does not stop until a suitable step-size si found; this means that large r
parameters may result in big computation times.

Parameters
» problem (dict) — Problem dictionary defining the cost f.

e r (float, optional) — The value by which a candidate step-size is multiplied if it does
not satisfy the descent condition. » should be in (0, 1).

* c(float, optional)- The parameter defining the descent condition that a candidate step
must satisfy.

* x_0 (array_like, optional) — The initial condition. This can be either an ndarray of
suitable size, or a scalar. If it is a scalar then the same initial value is used for all components
of x.

* num_iter (int, optional) - The number of iterations to be performed.

» tol (float, optional) - If given, this argument specifies the tolerance ¢ in the stopping
condition |z — 2| < t.

Returns
x — The approximate solution after num_iter iterations.

Return type
ndarray

tvopt.solvers.ppa(problem, penalty, x_0=0, num_iter=100, tol=None)
Proximal point algorithm (PPA).

This function implements the proximal point algorithm

{41

" = prox,; ()

where p > 0 is the penalty parameter and we recall that

. 1
prox, ;(z) = arg min, {f(y) ol x||2} .

Parameters
» problem (dict) — Problem dictionary defining the cost f.
* penalty (float) — The penalty parameter for the proximal evaluation.

* x_0 (array_like, optional) — The initial condition. This can be either an ndarray of
suitable size, or a scalar. If it is a scalar then the same initial value is used for all components
of x.

e num_iter (int, optional)— The number of iterations to be performed.

* tol (float, optional)— If given, this argument specifies the tolerance ¢ in the stopping
condition ||z — zf| < ¢.

Returns
x — The approximate solution after num_iter iterations.

1.7. tvopt.solvers module 51

tvopt, Release 0.2.7

Return type
ndarray

tvopt.solvers.prs(problem, penalty, rel=1, x_0=0, num_iter=100, tol=None)
Peaceman-Rachford splitting (PRS).

This function implements the Peaceman-Rachford splitting to solve the composite problem

min{f(z) + 9(z)}.

The algorithm is characterized by the updates:

zt = proxpf(ze) (1.30)
y' = proxpg(Qa:e @-.31)
2 = 2% 1 2a(y* G.30)

where p > 0 is the penalty and « € (0, 1] is the relaxation constant.
Parameters
» problem (dict) — Problem dictionary defining the costs f and g.
» penalty (float) — The algorithm’s penalty parameter.
e rel (float, optional) — The relaxation constant.

* x_0 (array_like, optional) — The initial condition. This can be either an ndarray of
suitable size, or a scalar. If it is a scalar then the same initial value is used for all components
of z.

e num_iter (int, optional) - The number of iterations to be performed.

» tol (float, optional) - If given, this argument specifies the tolerance ¢ in the stopping
condition [|z‘*+! — x| < ¢.

Returns
x — The approximate solution after num_iter iterations.

Return type
ndarray

tvopt.solvers.stop(x, x_old, tol=None)
Stopping condition.

This function checks the stopping condition

”mEJrl 71,6” <t

if ¢ is specified.
Parameters
* X (ndarray) — The current iterate.

» x_old (ndarray) — The previous iterate.

52 Chapter 1. tvopt package

tvopt, Release 0.2.7

* tol (float, optional)— The tolerance in the stopping condition.

Returns
True if tol is given and the stopping condition is verified, False otherwise.

Return type
bool

tvopt.solvers. subgradient (problem, x_0=0, num_iter=100, tol=None)
Sub-gradient method.

This function implements the sub-gradient method

zé-‘rl — zé _ O/@f(fl,‘g)

where V f(z¢) € df (2') is a sub-differential and of = 1/(£ + 1).
Parameters
» problem (dict) — Problem dictionary defining the cost f.

* x_0 (array_like, optional) — The initial condition. This can be either an ndarray of
suitable size, or a scalar. If it is a scalar then the same initial value is used for all components
of z.

e num_iter (int, optional)— The number of iterations to be performed.

* tol (float, optional)— If given, this argument specifies the tolerance ¢ in the stopping
condition |lz‘*! — zf| < ¢.

Returns
x — The approximate solution after num_iter iterations.

Return type
ndarray

1.8 tvopt.utils module

Utility tools.

tvopt.utils.bisection_method(f, a, b, tol=1e-05)

Minimize using the bisection method.
This function minimizes a function f using the bisection method, stopping when a — b < ¢ for some threshold ¢.
Parameters
* f — The scalar function to be minimized.
e a(float)— The lower bound of the initial interval.
* b (float) — the upper bound of the initial interval.
* tol (float, optional)— The stopping condition, defaults to le-5.

Returns
x — The approximate minimizer.

Return type
float

1.8. tvopt.utils module 53

tvopt, Release 0.2.7

tvopt.utils.dist(s, r, ord=2)
Distance of a signal from a reference.

This function computes the distance of a signal s from a reference r. The reference can be either constant or a
signal itself. Different norm orders can be used, that can be specified using the numpy.linalg.norm argument ord.

Parameters
* s (array_like) — The signal, with the last dimension indexing time.

* r (array_like) — The reference, either a single array or a signal with the last dimension
indexing time.

* ord (optional) — Norm order, see numpy.linalg.norm.

Raises
ValueError — For incompatible dimensions of signal and reference.

Returns
The distance of the signal from the reference as an array with length equal to the last dimension

of s.

Return type
ndarray

tvopt.utils. £fpr(s, ord=2)
Fixed point residual.

This function computes the fixed point residual of a signal s, that is

{Ils* — s} een-

Different norm orders can be used, that can be specified using the numpy.linalg.norm argument ord.
Parameters
* s (array_like) — The signal, with the last dimension indexing time.
* ord (optional) — Norm order, see numpy.linalg.norm.

Returns
The fixed point residual.

Return type
ndarray

tvopt.utils.initialize_trajectory(x_0, shape, num_iter)
tvopt.utils.is_scalar(c)
Check if scalar.

tvopt.utils.is_square (mat)
Check if the matrix is 2-D and square.

Parameters
mat (ndarray) — The given matrix.

Returns
True if the matrix is 2-D and square, False otherwise.

Return type
bool

54 Chapter 1. tvopt package

tvopt, Release 0.2.7

tvopt.utils.is_stochastic(mat, row=True, col=True)

Verify if a given matrix is row, column or doubly stochastic.
Parameters
* mat (ndarray) — The given matrix.
* row (bool, optional)— Check for row stochasticity, default True.

* col (bool, optional) - Check for column stochasticity, default True.

Returns
True if the matrix is stochastic (row, column or doubly, as specified by the arguments).

Return type
bool

Raises
ValueError — If neither row nor col are True.

tvopt.utils.norm(x)

Compute the norm of the given vector.

Parameters
X (array_like) — The vector array.

Returns
The square norm.

Return type
ndarray

See also:

square_norm
Square norm

Notes

The function reshapes x to a column vector, so it does not correctly handle n-dimensional arrays. For n-dim
arrays use numpy.linalg.norm.

tvopt.utils.normalize(x)

Normalize a vector to unit vector.

Parameters
X (array_1like) — The vector array.

Returns
The normalized vector.

Return type
ndarray

1.8. tvopt.utils module 55

tvopt, Release 0.2.7

Notes
The function reshapes x to a column vector, so it does not correctly handle n-dimensional arrays. For n-dim
arrays use numpy.linalg.norm.

tvopt.utils.orthonormal_matrix(dim)

Generate a random orthonormal matrix.

This function generates uniformly distributed random orthonormal matrices using Householder reflections (see
Section 7 of this paper).

Parameters
dim (int) — Size of the matrix.

Returns
orth_mat — The random orthonormal matrix.

Return type
ndarray

Raises
ValueError — For invalid dim.

tvopt.utils.positive_semidefinite_matrix(dim, max_eig=None, min_eig=None)

Generate a random positive semi-definite matrix.

The matrix is generated as

M = Odiag{\;}O"

where O is a random orthonormal matrix and \; are random eigenvalues uniformly drawn between min_eig and
max_eig. If dim is larger than or equal to two, min_eig and max_eig are included in the eigenvalues list.

Parameters
e dim (int) — Size of the matrix.

» eigs (array-like, optional)- The list of eigenvalues for the matrix; if None, the eigen-
values are uniformly drawn from [10~2, 102].

Returns
The random positive semi-definite matrix.

Return type
ndarray

Raises
ValueError. —

See also:

random_matrix
Random matrix generator.

tvopt.utils.print_progress (i, num_iter, bar_length=_80, decimals=2)
Print the progresso to command line.
Parameters

e i (int) — Current iteration.

56 Chapter 1. tvopt package

https://arxiv.org/pdf/math-ph/0609050.pdf

tvopt, Release 0.2.7

e num_iter (int) — Total number of iterations.
* bar_length (int, optional) - Length of progress bar.

» decimals (int, optional)— Decimal places of the progress percent.

Notes

Adapted from here.

tvopt.utils.random _matrix(eigs)

Generate a random matrix.

The matrix is generated as

M = Odiag{)\;}O"

where O is a random orthonormal matrix and A; are the specified eigenvalues.

Parameters
eigs (array-1ike) — The list of eigenvalues for the matrix.

Returns
The random positive semi-definite matrix.

Return type
ndarray

See also:

orthonormal_matrix
Orthonormal matrix generator.

tvopt.utils.regret(f, s, r=None)

Cost over time or regret.

This function computes the cost evaluated using f incurred by an approximate minimizer s

f(Sj)}ZeN

1

{

L

~| =

J

or, if a reference r is specified, then the function computes the regret

—_

F(s7) = F(r7) }een

14
=1

P
J
where r is either a constant array or a signal.
Parameters
» f (costs.Cost) — The cost to evaluate in the signal.

* s (array_like) — The sequence of approximate minimizers.

1.8. tvopt.utils module

57

https://gist.github.com/aubricus/f91fb55dc6ba5557fbab06119420dd6a

tvopt, Release 0.2.7

» r (array_like, optional)— The reference, either a single array or a signal with the last
dimension indexing time.

Returns
The sequence of cost evaluations or regret.

Return type
ndarray

tvopt.utils.soft_thresholding(x, penalty)
Soft-thresholding.

The function computes the element-wise soft-trhesholding defined as

sign(z) max{|z| — p, 0}

where p is a positive penalty parameter.
Parameters
* x (array_like) — Where to evaluate the soft-thresholding.
» penalty (float) — The positive penalty parameter p.

Returns
The soft-thresolding of x.

Return type
ndarray

tvopt.utils.solve(a, b)
tvopt.utils.square_norm(x)
Compute the square norm of the given vector.

Parameters
X (array_like) — The vector array.

Returns
The square norm.

Return type
ndarray

Notes
The function reshapes x to a column vector, so it does not correctly handle n-dimensional arrays. For n-dim
arrays use numpy.linalg.norm.

tvopt.utils.uniform_quantizer(x, step, thresholds=None)

Function to perform uniform quantization.

The function applies the uniform quantization

q(z) = Afloor <Z + ;)

where A is the given step. Moreover, a saturation to upper and lower thresholds is peformed if given as argument.

Parameters

58 Chapter 1. tvopt package

tvopt, Release 0.2.7

* X (ndarray) — The array to be quantized.
» step (float) — The step of the quantizer.
» thresholds (1ist, optional)— The upper and lower saturation thresholds.

Returns
The quantized array.

Return type
ndarray

1.9 Module contents

1.9. Module contents 59

tvopt, Release 0.2.7

60 Chapter 1. tvopt package

CHAPTER
TWO

INDICES AND TABLES

* genindex
* modindex

¢ search

61

tvopt, Release 0.2.7

62 Chapter 2. Indices and tables

PYTHON MODULE INDEX

t

tvopt, 59

tvopt.costs, 1
tvopt.distributed_solvers, 24
tvopt.networks, 30
tvopt.prediction, 38
tvopt.sets, 40
tvopt.solvers, 46
tvopt.utils, 53

63

tvopt, Release 0.2.7

64 Python Module Index

Symbols

_prox_solver (tvopt.costs.Cost attribute), 3

A

AbsoluteValue (class in tvopt.costs), 1

adj_mat (tvopt.networks.Network attribute), 32

admm() (in module tvopt.distributed_solvers), 24

admm() (in module tvopt.solvers), 46

AffineSet (class in tvopt.sets), 40

alternating_projections() (in module tvopt.sets),
45

approximate_time_derivative()
(tvopt.costs.DynamicExample_1D method), 6

approximate_time_derivative()
(tvopt.costs.DynamicExample_2D method), 8

aug_dgm() (in module tvopt.distributed_solvers), 24

average_consensus () (in module
tvopt.distributed_solvers), 25

B

backtracking_gradient() (in module tvopt.solvers),
46

backward_finite_difference()
tvopt.costs), 22

Ball (class in tvopt.sets), 41

Ball_11 (class in tvopt.sets), 41

bisection_method() (in module tvopt.utils), 53

Box (class in tvopt.sets), 41

broadcast () (tvopt.networks.DynamicNetwork method),
30

broadcast () (tvopt.networks.Network method), 33

buffer (tvopt.networks.Network attribute), 32

C

c (tvopt.costs.Constant attribute), 2

check_input () (tvopt.sets.Set method), 44
check_input () (tvopt.sets.T method), 44
circle_graph() (in module tvopt.networks), 35
circulant_graph() (in module tvopt.networks), 35
complete_graph() (in module tvopt.networks), 36
compute_proximal () (in module tvopt.costs), 23

(in module

INDEX

consensus () (tvopt.networks. DynamicNetwork method),
30

consensus () (tvopt.networks.Network method), 33

Constant (class in tvopt.costs), 2

contains () (tvopt.sets.AffineSet method), 41

contains () (tvopt.sets.Ball method), 41

contains () (tvopt.sets.Ball_lI method), 41

contains () (tvopt.sets.Box method), 41

contains () (tvopt.sets.Halfspace method), 42

contains () (tvopt.sets.IntersectionSet method), 42

contains() (tvopt.sets.NonnegativeOrthant method), 43

contains () (tvopt.sets.R method), 43

contains () (tvopt.sets.ScaledSet method), 43

contains () (tvopt.sets.Set method), 44

contains() (tvopt.sets.T method), 45

contains () (tvopt.sets.TranslatedSet method), 45

Cost (class in tvopt.costs), 2

costs (tvopt.costs.SeparableCost attribute), 21

D

degrees (tvopt.networks.Network attribute), 32
DiscreteDynamicCost (class in tvopt.costs), 5
dist () (in module tvopt.utils), 53

dom (tvopt.costs.Constant attribute), 2

dom (tvopt.costs.Cost attribute), 3

dpgm() (in module tvopt.distributed_solvers), 25
dual_ascent () (in module tvopt.distributed_solvers), 26
dual_ascent () (in module tvopt.solvers), 47
dual_1£bs () (in module tvopt.solvers), 48
DynamicExample_1D (class in tvopt.costs), 6
DynamicExample_2D (class in tvopt.costs), 7
DynamicNetwork (class in tvopt.networks), 30

E

erdos_renyi() (in module tvopt.networks), 36
ExtrapolationPrediction (class in tvopt.prediction),
38

F

fbs) (in module tvopt.solvers), 48
fpr O (in module tvopt.utils), 54
function() (tvopt.costs.AbsoluteValue method), 1

65

tvopt, Release 0.2.7

function() (tvopt.costs.Constant method), 2

function() (tvopt.costs.Cost method), 3

function() (tvopt.costs.DiscreteDynamicCost method),
5

function() (tvopt.costs.DynamicExample_ID method),
6

function() (tvopt.costs.DynamicExample_2D method),
8

function() (tvopt.costs.Huber method), 9

function() (tvopt.costs.Huber_ID method), 10

function() (tvopt.costs.Indicator method), 11

function() (tvopt.costs.Logistic method), 12

function() (tvopt.costs.LogisticRegression method), 13

function() (tvopt.costs.Norm_I method), 14

function() (tvopt.costs.Norm_inf method), 15

function() (tvopt.costs.PowerCost method), 15

function() (tvopt.costs.ProductCost method), 15

function() (tvopt.costs.Quadratic method), 16

function() (tvopt.costs.Quadratic_ID method), 17

function() (tvopt.costs.RobustLinearRegression
method), 18

function() (tvopt.costs.SampledCost method), 18

function() (tvopt.costs.ScaledCost method), 20

function() (tvopt.costs.SeparableCost method), 21

function() (tvopt.costs.SumCost method), 22

function() (tvopt.prediction.Prediction method), 39

G

gossip_consensus() (in
tvopt.distributed_solvers), 26

gradient) (in module tvopt.solvers), 49

gradient () (tvopt.costs.AbsoluteValue method), 1

gradient () (tvopt.costs.Constant method), 2

gradient () (tvopt.costs.Cost method), 4

gradient () (tvopt.costs.DiscreteDynamicCost method),
5

gradient () (tvopt.costs.DynamicExample_I1D method),
7

gradient () (tvopt.costs.DynamicExample_2D method),
8

gradient () (tvopt.costs.Huber method), 9

gradient) (tvopt.costs.Huber_I1D method), 10

gradient () (tvopt.costs.Logistic method), 12

gradient () (tvopt.costs.LogisticRegression method), 13

gradient () (tvopt.costs.Norm_1 method), 14

gradient) (tvopt.costs.PowerCost method), 15

gradient) (tvopt.costs.ProductCost method), 16

gradient () (tvopt.costs.Quadratic method), 16

gradient () (tvopt.costs.Quadratic_I1D method), 17

gradient() (tvopt.costs.RobustLinearRegression
method), 18

gradient) (tvopt.costs.SampledCost method), 19

gradient) (tvopt.costs.ScaledCost method), 20

gradient () (tvopt.costs.SeparableCost method), 21

module

gradient) (tvopt.costs.SumCost method), 22
gradient () (tvopt.prediction.Prediction method), 39

H

Halfspace (class in tvopt.sets), 42

hessian() (tvopt.costs.Constant method), 2

hessian() (tvopt.costs.Cost method), 4

hessian() (tvopt.costs.DiscreteDynamicCost method), 6

hessian() (tvopt.costs.DynamicExample_1D method), 7

hessian() (tvopt.costs.DynamicExample_2D method), 8

hessian() (tvopt.costs.Huber method), 9

hessian() (tvopt.costs.Huber_ID method), 10

hessian() (tvopt.costs.Logistic method), 12

hessian() (tvopt.costs.LogisticRegression method), 14

hessian() (tvopt.costs.PowerCost method), 15

hessian() (tvopt.costs.ProductCost method), 16

hessian() (tvopt.costs.Quadratic method), 16

hessian() (tvopt.costs.Quadratic_ID method), 17

hessian() (tvopt.costs.RobustLinearRegression
method), 18

hessian() (tvopt.costs.SampledCost method), 19

hessian() (tvopt.costs.ScaledCost method), 20

hessian() (tvopt.costs.SeparableCost method), 21

hessian() (tvopt.costs.SumCost method), 22

hessian() (tvopt.prediction.Prediction method), 39

Huber (class in tvopt.costs), 9

Huber_1D (class in tvopt.costs), 10

incidence_matrix() (in module tvopt.networks), 36
Indicator (class in tvopt.costs), 11
initialize_trajectory() (in module tvopt.utils), 54
IntersectionSet (class in tvopt.sets), 42
is_connected() (in module tvopt.networks), 36
is_dynamic (tvopt.costs.Cost attribute), 3

is_dynamic (tvopt.costs.SeparableCost attribute), 21
is_scalar () (in module tvopt.utils), 54

is_square() (in module tvopt.utils), 54
is_stochastic() (in module tvopt.utils), 54

L

Linear (class in tvopt.costs), 12
LinearRegression (class in tvopt.costs), 12
Logistic (class in tvopt.costs), 12
LogisticRegression (class in tvopt.costs), 13
LossyNetwork (class in tvopt.networks), 31

M

max_consensus () (in module tvopt.distributed_solvers),
27

max_consensus ()
method), 31

max_consensus () (tvopt.networks.Network method), 33

(tvopt.networks.DynamicNetwork

66

Index

tvopt, Release 0.2.7

metropolis_hastings() (in module tvopt.networks),
37

mm() (in module tvopt.solvers), 50

module
tvopt, 59
tvopt.costs, 1
tvopt.distributed_solvers, 24
tvopt.networks, 30
tvopt.prediction, 38
tvopt.sets, 40
tvopt.solvers, 46
tvopt.utils, 53

N

N (tvopt.costs.SeparableCost attribute), 21

N (tvopt.networks.Network attribute), 32

ndim (tvopt.sets.Set attribute), 43

neighbors (tvopt.networks.Network attribute), 32
Network (class in tvopt.networks), 32

newton() (in module tvopt.solvers), 50

nids () (in module tvopt.distributed_solvers), 27
NoisyNetwork (class in tvopt.networks), 34
NonnegativeOrthant (class in tvopt.sets), 42
norm() (in module tvopt.utils), 55

Norm_1 (class in tvopt.costs), 14

Norm_2 (class in tvopt.costs), 15

Norm_inf (class in tvopt.costs), 15
normalize() (in module tvopt.utils), 55

O

orthonormal_matrix() (in module tvopt.utils), 56

P

pg_extra() (in module tvopt.distributed_solvers), 28
positive_semidefinite_matrix() (in module
tvopt.utils), 56
PowerCost (class in tvopt.costs), 15
ppa) (in module tvopt.solvers), 51
Prediction (class in tvopt.prediction), 38
print_progress() (in module tvopt.utils), 56
ProductCost (class in tvopt.costs), 15
projection() (tvopt.costs.Indicator method), 11
projection() (tvopt.sets.AffineSet method), 41
projection() (tvopt.sets.Ball method), 41
projection() (tvopt.sets.Ball_lI method), 41
projection() (tvopt.sets.Box method), 42
projection() (tvopt.sets.Halfspace method), 42
projection() (tvopt.sets.IntersectionSet method), 42
projection() (tvopt.sets.NonnegativeOrthant method),
43
projection() (tvopt.sets.R method), 43
projection() (tvopt.sets.ScaledSet method), 43
projection() (tvopt.sets.Set method), 44
projection() (tvopt.sets.T method), 45

projection() (tvopt.sets.TranslatedSet method), 45
prox_aac() (in module tvopt.distributed_solvers), 28
prox_ed() (in module tvopt.distributed_solvers), 29
proximal () (tvopt.costs.AbsoluteValue method), 1
proximal () (tvopt.costs.Constant method), 2
proximal () (tvopt.costs.Cost method), 4
proximal () (tvopt.costs.DiscreteDynamicCost method),
6
proximal () (tvopt.costs.Huber method), 10
proximal () (tvopt.costs.Huber_I1D method), 11
proximal () (tvopt.costs.Indicator method), 11
proximal () (tvopt.costs.Logistic method), 13
proximal () (tvopt.costs.LogisticRegression method), 14
proximal () (tvopt.costs.Norm_1 method), 15
proximal () (tvopt.costs.Norm_inf method), 15
proximal () (tvopt.costs.Quadratic method), 16
proximal () (tvopt.costs.Quadratic_1D method), 17
proximal () (tvopt.costs.SampledCost method), 19
proximal () (tvopt.costs.ScaledCost method), 20
proximal () (tvopt.costs.SeparableCost method), 22
proximal () (tvopt.prediction.Prediction method), 39
prs((in module tvopt.solvers), 52

Q

Quadratic (class in tvopt.costs), 16
Quadratic_1D (class in tvopt.costs), 17
QuantizedNetwork (class in tvopt.networks), 35

R

R (class in tvopt.sets), 43
random_graph() (in module tvopt.networks), 37
random_matrix () (in module tvopt.utils), 57
ratio_consensus() (in
tvopt.distributed_solvers), 30
receive() (tvopt.networks.Network method), 34
regret () (in module tvopt.utils), 57
RobustLinearRegression (class in tvopt.costs), 18

S

sample() (tvopt.costs.Cost method), 4

sample () (tvopt.costs.DiscreteDynamicCost method), 6
sample () (tvopt.networks.DynamicNetwork method), 31
SampledCost (class in tvopt.costs), 18

scale() (tvopt.sets.Set method), 44

scale() (tvopt.sets.T method), 45

ScaledCost (class in tvopt.costs), 19

ScaledSet (class in tvopt.sets), 43

send () (tvopt.networks.DynamicNetwork method), 31
send () (tvopt.networks.LossyNetwork method), 32
send () (tvopt.networks.Network method), 34

send () (tvopt.networks.NoisyNetwork method), 34
send () (tvopt.networks.QuantizedNetwork method), 35
SeparableCost (class in tvopt.costs), 20

module

Index

67

tvopt, Release 0.2.7

Set (class in tvopt.sets), 43

shape (tvopt.sets.Set attribute), 43

size (tvopt.sets.Set attribute), 44

smooth (tvopt.costs. Constant attribute), 2
smooth (tvopt.costs.Cost attribute), 3

smooth (tvopt.costs.SeparableCost attribute), 21
soft_thresholding() (in module tvopt.utils), 58
solve() (in module tvopt.utils), 58
square_norm() (in module tvopt.utils), 58
star_graph() (in module tvopt.networks), 38
stop() (in module tvopt.solvers), 52
subgradient () (in module tvopt.solvers), 53
SumCost (class in tvopt.costs), 22

T

T (class in tvopt.sets), 44
TaylorPrediction (class in tvopt.prediction), 40
time (tvopt.costs.Cost attribute), 3
time_derivative() (tvopt.costs.Cost method), 4
time_derivative() (tvopt.costs.DynamicExample_I1D
method), 7
time_derivative() (tvopt.costs.DynamicExample_2D
method), 8

translate() (tvopt.sets.Set method), 44
translate() (tvopt.sets.T method), 45
TranslatedSet (class in tvopt.sets), 45
tvopt

module, 59
tvopt.costs

module, 1
tvopt.distributed_solvers

module, 24
tvopt.networks

module, 30
tvopt.prediction

module, 38
tvopt.sets

module, 40
tvopt.solvers

module, 46
tvopt.utils

module, 53

U

uniform_quantizer() (in module tvopt.utils), 58

update() (tvopt.prediction.ExtrapolationPrediction
method), 38

update () (tvopt.prediction.Prediction method), 39

update () (tvopt.prediction.TaylorPrediction method), 40

W

weights (tvopt.networks.Network attribute), 32

68 Index

	tvopt package
	Submodules
	tvopt.costs module
	tvopt.distributed_solvers module
	tvopt.networks module
	tvopt.prediction module
	tvopt.sets module
	tvopt.solvers module
	tvopt.utils module
	Module contents

	Indices and tables
	Python Module Index
	Index

